CALCULATION OF THE SHOCK-WAVE ADIABATICS FOR SOME
HETEROGENEOUS MIXTURES

G. A. Bogachev UDC 534.222.,2

A method has been proposed [1] for calculating shock-wave adiabatics for two-phase mixtures
which does not use the additivity principle, and this is here extended to a medium consisting of
n phases; the shock-wave adiabatic is derived and compared with experiment for a three-phase
mixture: an alloy consisting of copper, zinc, and lead (brass). It is shown for a paraffin—tung-
sten mixture that the adiabatics for the individual phases deviate from ones for the correspond-
ing solid materials. The known equations of state for aluminum and epoxide resin have been
used to determine the shock-wave adiabatic for such a mixture. A comparison is made with the
analogous calculation made from the additivity principle.

1. Model. Shock waves in multiphase media are involved in research on the propagation of shock
waves in rocks impregnated with water or oil [2, 3], in determining the equations of state for one of the
phases [1, 4], and in studying the properties of new composite materials and alloys [5, 6]. In most recently
published studies [4-7], the shock-wave adiabatic of the mixture has been derived via the additive approxi-
mation, in which it is assumed that each phase is compressed in accordance with its own Hugoniot adiabatic
for the solid material. However, there is another viewpoint on shock waves in heterogeneous mixtures,
which has been presented [1, 8] as that the shock-wave adiabatics of the phases may deviate from those for
the pure materials, with the result that at certain phase concentrations one can get an anomalous slope in
the Hugoniot adiabatics, as for porous materials [9].

Let the multiphase medium consist of particles differing in nature, the state of each of which is char-
acterized by the pressure, the density. and the temperature; these parameters are related by the equation
of state for the corresponding single phase. We assume that the multiphase medium is homogeneous and
isotropic on a macroscopic scale. We consider the steady-state propagation of a planar shock wave in such
a medium. We assume that the wave amplitude is not too great, so that in the equation of state we do not
need to take into account the electronic components for the pressure and internal energy. On the other hand,
we assume also that the wave is not so weak that the hydrostatic component of the force field applied to the
mixture considerably exceeds the internal shear stresses. Then the medium may be considered as a com-
pressible liquid, and its behavior in response to shock waves is described by the equations of hydrodynamics.

The equations of motion and energy for the mixture [3] are put as follows for an n-phase mixture if
one assumes that the phase pressures are equal (a two-phase mixture was considered in {1]); for phase i
we have the equation of motion

Plai%i:_aiig“*”l?i (1Y

and the equation of continuity
d(pixi) | d(pawi) (1.2
at + ox =0 1.2)

together with the energy balance equation
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Here p; is the density of phase i, whose concentration by volume is o; , with Z o =1; w; is velocity,

p is pressure, and Ri is the bulk force from the interaction between phases, Whlch acts on phase i from the
other phases, with €; the specific internal energy of phase i, (SWi/dt the effective work of the forces acting
from all other phases on phase i in unit time, g; the flux of heat into phase i from all the other phases, and
¥i the work of the viscous bulk forces, which is converted to heat, as performed on phase i-by the other
phases and arising from relative displacement of the phases. There is a zero contribution overall to the
momentum and energy of the whole mixture from the internal interaction between the phases:

(JR =0, Da—=0 NoWde=0)
i=1 i=1 [l

The shock-wave speed U is constant, so it is convenient in (1.1)-{1.3) to convert to the new variable
z=x — Ut; we get the continuity integrals for the mass for each of the phases as

@;0:u; = digPioltze = My (i=1,2,...,n) (1.4)
and the integrals for the conservation of the total momentum of the medium as
p - E My — 2 Mo + po (1.5)
il -1
and those for the overall total energy as
n " n 9
z 4 M, [5 ) T “’lpJ 2 tip 1 “‘) + azouzopo} (1.6)

l-=1

Here uj=w — Ulis the mass speed of the particles of phase i relative to the shock-wave front; sub-
script zero denotes quantities characterizing the state of the medium in front of the shock wave. The equa-
tions for momentum and energy balance for phase i become as follows in terms of the new variable:

& (Mo, + ap) —pi = By (1.7)

T{‘[1‘91+ ;2)T 1pu/Jk pT"] Yi +‘Qt—0 (1'8)

¥

We multiply (1.7) by U and subtract from (1.8) to get

d- { M; '/"z = uf) +-ap(w; — Uy~ M:‘wiU} =~ q; =Yy — RU

We integrate this equation over the range z; — h, z,-+ h. which includes the shock-wave front, and then
pass to the limit h—0, which gives us the following rclatlonshlp on the assumption that the range 2h allows
unlimited increase only in the derivatives, while the variables themselves wi, €, p, and the functions q;>
i and Ri of these vary stepwise, but with restricted changes:

M (&0 + u/ 2) + aquip = M; (e + uz® / 2) -+ @D (1.9)

2. Mechanical Equilibrium Approximation. We write (1.4)-(1.6) and (1.9) for the case where mechan-
ical equilibrium between the phases is attained hehind the shock-wave front, i.e., we assume that immediate.

ly behind the step we have

Uy = Uy = ...= Uy = U

This relationship closes system (1.4)-(1.6) and (1.9).



If we define the mass phase concentrations x; and the specific volumes v; via

x=wp/ ) w0, vi—1/p;

i=1

then we get the specific volume for the heterogeneous multiphase mixture V as
V=1IP=1/2°‘i9i=2$ivi (2.1
i=1 =1

Then (1.4) and (1.5) with ujp= — U take the usual form for shock waves, but they apply subject to (2.1)
and for mixtures:

w/V+p=U/Vo+py ulV=—=U/V, (2.2)
One frequently uses a different form for these equations:

2 __y2 PP 2 __y2_ P—Po
U -~Vo Voo v , w=v __—'Vo—V (23)

Equation (1.6) gives the increment in the internal energy of the medium, and with (2.2) hecomes
é i (&; — €)= o (P + o) (Vo — V) (2.4)
which from (2.1) can also be put as
é Z;{8; ~— 8ig — o (P |- Po) (Vie — V)} =0 (2.5)

i=1

Using (2.2), we can replace (1.9) by
& — €0 =Yo (P + po) (Vo — V) + p(V —v3) — po (Vo — Vi) (2.6)

Formulas (2.1)-(2.6) become the formulas of [1] for the two-phase medium.
The change in the internal energy of phase i on passage of the shock wave can be put as a sum of in-
crements in the elastic energy £ and the thermal energy [9]:

g — €0 = &; (1)) + vy (p — px (W) /¥ (v) 2.7

where px(vi) is the cold pressure on phase i, and ﬁ/(vi) is the Griineisen parameter; we eliminate £; — £,
from (2.6) and (2.7) to get the equation for the Hugoniot adiabatic in the form

(k= 1) px (v4) — 282 (v9) /¥4
ST h A —(V Vo (2.8)

where h=1+2/y(v;), while p, has been omitted, because p; <p.

If V=vjand v¢=" (, (2.8) becomes the adiabatic equation for solid phase i, which has been given (9]

=) pe (o) = 28 G [ s (2.9)
o h—vp/v; '

If we formally extend (2.8) to high-amplitude shock waves, we get the condition for the limiting com-
pression of the multiphase medium: (Vj+ v)/V; <h+ 1.

If the pressure and specific volume of the mixture are known, (2.8) allows one to find the specific
volume of phase i and hence to construct the shock-wave adiabatic for this phase.

Similarly, one handles the inverse problem of constructing the shock-wave adiabatic for the mixture
from the known equations of space for the phase shift; for this purpose we draw up a system of n+ 1 alge-
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braic equations in the form
V = Zzivi, p—=pV,v) =12, ...,n (2.10)
i=1

where p(V, v;) is the right side of (2.8): this system becomes closed if the pressure is given, and we can
solve it for the specific volume and thus construct the shock-wave adiabatic for the mixture.

3. Working Approximations. In the calculations given below for heterogeneous mixtures, we use
the equations of state for the following substances: copper, zinc, lead, tungsten, aluminum, and epoxide
resin. We use the following form [10] for the elastic components of the pressure for the metals except for
aluminum:

P (Vi) = pu — v () (e — ex (V))v;

pu = a® (vyg — v} / lwig — b (vyo — vl eg = opa (Lio—0i) (3.2

where aand b are coefficients determined by the linear relationship between the shock-wave speed in solid
phase i on the mass veloeity (U= a+ bw); the numerical values for these coefficients are given in Table 1.
We use the following form [16] for the elastic pressures of aluminum and epoxide resin:

Px (l).;) = C.“'i - DH:'2 -+ S}Lia My =2y vy —1) (32)

where Table 2 gives the values of C, D, and S; the specific energy of cold compression was calculated for
all substances from

€y (Uz') = - ( Px (U) dv (3.3)

l}io
The function y(vi) was considered as proportional to v;. i.e.,
¥ () = Yo vi{ vy (3.4)
where 7, is the Grilineisen coefficient under normal conditions, which is given in Tables 1 and 2; approxima-

tions (3.1), (3.3). and (3.4) have heen used [10] in calculating the shock-wave curves for porous aluminum,

We evaluated the accuracy of (3.1)-(3.4) and of the constants in them by comparing the calculated
adiabatics for metals given by (2.9) with the measurements of [11], and also with the adiabatics calculated
by a more complex method [12].

The two calculations and the experimental figures were in close agreement for all the metals; as we
have no published experimental data for the shock-wave adiabatic of epoxide resin, no such check was pos-

TABLE 1
| | |
Materfal I fo. g/cm? | 2 km/sec | b “n Ref,
] | !
Cu 8.90 | 3.958 1.497 1 2.00 , 1]
Zu 714 ! 3.050 1.559 | 2,45 | 1Y
Pb 11.34 ! 2.028 1.517 297 ¢ [
Wl 19035 1 4000 1285 | 154 | [0
TABLE 2
[
Material l C. Mbar D, Mbar S, Mbar ‘ Yo ’ % g/cm®
Al 0.761388 0.778860 - 1,198 2.13 2,785
epoxide resin (.0988842 (0.059183 016653 0.79 1.1090
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sible for this substance.

4. Shock-Wave Adiabatic of a Three-Phase Mixture. We used the above method to determine this
adiabatic for a mixture of three phases, for which purpose we took brass, which consists of copper, zinc,
and lead with weight proportions of the components respectively 61.5, 36, and 2.5 [13]. We wrote system
(2.10) for n=3 and substituted for p,(v;), €x(vj),and y(v)) from (3.1), (3.3), and (3.4) to get a system of al-
gebraic nonlinear equations for the unknown v, and V; this system was solved by computer using a gradient
method. As our initial approximation we took the values of the v; corresponding to normal conditions. The
computation was terminated when the differences of the v in two successive iterations were less than
0.0001 ecm .

Figure 1 shows the calculated shock-wave adiabatic for brass (full line) together with the measure-
ments of [13], which agree well; brass has a partly ordered CuZn structure, so at zero pressure the ob-
served density of 8.41 g/cm? is greater than the 8.22 given by the mixtures rule [13]. A simple displace-
ment of the predicted Hugoniot curve to the point for the observed initial density results in improved agree-
ment with experiment for all densities.

5. Two-Phase Mixtures. We show for the paraffin—tungsten mixture how to use the experimental
shock-wave adiabatic {7] and the known equation of state for one of the phases to find the shock-wave adia-
batics for these phases. For this purpose it is sufficient to find the specific volume of one of the phases
from (2.8), since that for the other phase is defined by (2.1). In our calculations we used previously checked
parameters for tungsten.

Table 3 and Figs. 2 and 3 show the calculated curves for tungsten lcurve 2} and paraffin (curve 4), to-
gether with the experimental data of [7] (point 1) for a paraffin—tungsten mixture containing respectively
66.2% (x,=0.662) and 84¢ {x,=0.84) tungsten by weight lcurve 3). It is clear from these figures that the
shock-wave adiabatics for the tungsten and paraffin phases deviate from those for the pure materials
(curves 1 and 5 respectively for tungsten and paraffin). The experimental points 2 in Figs. 2 and 3 were
taken from [11]. The heavy phase (tungsten) expands in a mixture with a light one, as in the case of porous
metals [9], which leads to an anomalous slope in the curve. This behavior in shock waves may be explained
if we consider the mixture as a porous material, for instance, of the heavy phase with pores filled by the
light phase. Although the mixture is overall compressed behind the shock wave, the heavy phase may en-
ter into the pores, and there may therefore be an effective expansion of this phase, with additional compres-
sion of the light one.

It has been shown for shock waves in paraffin—tungsten mixtures [7] that one can use an additive
approximation with the known Hugoniot adiabatics of tungsten and the mixture to determine the adiabatic
for paraffin. From this it was concluded [7] that mixture shock-wave adiabatics satisfy the additivity prin-
ciple. Our calculation shows that the measured adiabatic for the mixture can be represented as a sum of
displaced adiabatics for the individual phases.

We can compare the calculations of the mixture by our method with those from the additive approxi-
mation [4, 7], the latter for the binary mixture being

V(p) = oty (p) + z9v, (p)

& = yp (v — vy), & =1y p (V30 — 1)

To close a system one has to add the equations of state for the individual phases; as an example we
calculated the shock-wave adiabatic for a mixture consisting of aluminum and epoxide resin {16]. There is
no reliable evidence on the equation of state for paraffin, so one cannot perform an analogous calculation
for a paraffin—tungsten mixture. Table 4 gives the results from calculations via the schemes of {1] and
[7], together with the experimental data of [16], and it is clear that both calculations agree closely with
the experimental figures.

These calculations therefore do not enable one to judge definitively whether the additivity principle
is correct [4, 7]; major difficulties have been encountered [14] in applying this principle to detonation in a
mixture of explosive with tungsten. When one transfers to porous materials (one of the phases consists of
gas or cavities), one is certain that the additivity principle doesnotapply, whereas essentially this principle
is used to derive semiempirical equations of state for condensed media away from the Hugoniot adiabatic
for solid materials.
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TABLE 3
\% Vs \Y {010 €. - 10~10
xy ’ p.Mbar w 1 10-w, tw ) n .
ems/g emd/g | ems/g: ng/g erg/g erg/g
0.252 0,231 0.429 0.494 1.826 4.680 —3.762
0.221 0.500 0.195 0.272 4,728 6.025 2.187
0.662 0.217 0.574 0.204 0.243 5.543 6.306 4,049
0.165 1.495 0.224 0.049 18.327 9.486 35.643
0.140 0.310 0.072 (. 495 1.265 3.3068 <977
0.119 0.656 0.089 0.276 3.365 5.334 —6.97
0.840 0.115 0.816 0,094 0,223 4.349 6.041 —4.53
0.090 2.200 0.106 0.007 14.481 11,007 32.71
TABLE 4
- . Additive
VoLof| p, Experiment caleu. Calc. from [1]
AL % | M
» | Mbar 1‘;’“/ l Eﬁ]/ v. v v, e 10-0, | g4, 1070, | €, 10,
' sec em®/p | em®/g | em’/g erg/g  |erg/g erg/g

25 1 0.242 | 2.28 1 6.63 | 0.4t 0.407 0.406 2. 0.048 4.82
40 10281 12.2116.97 0.374 0.367 0.368 2.52 0.415 5.81
60 ]0.328 ] 2.23 | 7.25| 0.330 0.330 0.328 2. 0.965 7.07

Calculation from (2.6) results in negative increments in the specific internal energy of the light phase
e, at certain pressures in the case of a paraffin—tungsten mixturc (Table 3): this was considered (7] as a
paradoxical result. since in calculations for other mixtures the increment was always positive (Table 4).
This distribution of the internal energy between the phases may arise because the conditions for mechanical
equilibrium and a thermally metastable state may not be met simultaneously behind the shock wave in the
measurements, or else it may arise from the inadequacy of the linear approximation for the relation be-
tween the mass velocity and the shock-wave speed [15].

1 amn indebted to V. N. Nikolaevskii for suggesting the topics and for useful discussion.
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